The correct option is D (4n+1)π2
Since sin3x≥−1 and cos2x≥−1
we have
sin3x+cos2x≥−2
Thus the equality holds true if and only if;
sin3x=−1 and cos2x=−1
Now,
sin3x=−1
⇒3x=(4n−1)π2,n∈Z⇒x=(4n−1)π6⇒x=−π6,3π6,7π6,11π6,15π6,⋯⇒x=−π6,π2,7π6,11π6,5π2,⋯
cos2x=−1⇒2x=(2n+1)π⇒x=(2n+1)π2, n∈Z
⇒x=π2,3π2,5π2,⋯
Therefore the requires solution set is
x=π2,5π2,9π2∴x=(4n+1)π2, n∈Z