The solution set of the equation (x+1)(x+2)(x+3)(x+4)=120 is
-6,1,-5±39i2
6,-1,-5±39i2
-6,-1,-5±39i2
6,1,-5±39i2
Explanation for the correct option:
Find the solution set of the given equation
Given, (x+1)(x+4)(x+2)(x+3)=120
(x2+4x+x+4)(x2+3x+2x+6)=120(x2+5x+4)(x2+5x+6)=120
Let, x2+5x=m
⇒(m+4)(m+6)=120⇒m2+6m+4m+24=120⇒m2+10m-96=0⇒m2+16m-6m-96=0⇒m(m+16)-6(m+16)=0⇒m-6m+16=0(m-6)=0⇒m=6m+16=0⇒m=-16
Put the value of mback, we get equations
x2+5x-6=0andx2+5x+16=0
Finding roots of x2+5x-6=0
x2+6x-x-6=0⇒x+6x-1=0x=-6andx=1
Finding determinant of x2+5x+16=0
△=-39<0⇒△=39i⇒x=-5±39i2
Hence the correct option is option (A) i.e. -6,1,-5±39i2