The solution set of the equation x-ax-b+x-bx-a=ab+ba,a≠b is
a-b,0
ab,0
a+b,0
Explanation for the correct option:
Given, x-ax-b+x-bx-a=ab+ba,a≠b
Let, x-ax-b=m
⇒m+1m=a2+b2ab⇒abm2-a2+b2m+ab=0⇒(bm-a)(am-b)=0⇒m=ab,m=ba
If m=ab,x-ax-b=ab
⇒bx-ab=ax-ab⇒ax-bx=0⇒x(a-b)=0⇒x=0
If m=ba,x-ax-b=ba
⇒ax-a2=bx-b2⇒ax-bx=a2-b2⇒x(a-b)=(a-b)(a+b)⇒x=a+b
Hence the correct answer is option (C), a+b,0
Arrange 12,13,34, 56 in ascending order.
Solve : 8x32n-8x-32n=63.
Evaluate the value of following:-
111+411+311+211
Evaluate the value of following :-
25-65+75
The term independent of x in the expansion of x+1x23-x13+1-x-1x-x1210, x≠1, is equal to