The solution set of the inequality 1x−2−1x≤2x+2 is (−α,β]∪(γ,α)∪[δ,∞), then
1x−2−1x−2x+2≤0x(x+2)−(x2−4)−2x(x−2)x(x−2)(x+2)≤0x2+2x−x2+4−2x2+4xx(x−2)(x+2)≤0−2x2+6x+4x(x−2)(x+2)≤0x2−3x−4x(x−2)(x+2)≥0x2−4x+x−4x(x−2)(x+2)≥0(x−4)(x+1)(x−0)(x−2)(x+2)≥0x∈(−2,−1)U(0,2)U(4,∞)α=2β=−1γ=0δ=4α+β+γ+δ=4+2−1=5αβγ=0