The correct option is B x∈(cot3,cot2)
(cot−1x)(tan−1x)+(2−π2)cot−1x−3tan−1x−3(2−π2)>0
⇒cot−1x(tan−1x+2−π2)−3(tan−1x+2−π2)>0
⇒(cot−1x−3)(tan−1x+2−π2)>0
⇒(cot−1x−3)(2−cot−1x)>0 (∵tan−1x+cot−1x=π2)
⇒(cot−1x−3)(cot−1x−2)<0
⇒2<cot−1x<3
⇒cot3<x<cot2
(∵cot−1x is a decreasing function)
Hence, x∈(cot3,cot2)