The correct option is B (−2,3)
For the inequality to be defined,
(x+2)(x+4)>0 and x+2>0
⇒x∈(−∞,−4)∪(−2,∞) and x∈(−2,∞)
So, x∈(−2,∞)
Now,
log3(x+2)(x+4)+log1/3(x+2)<12log√37
⇒log3(x+2)(x+4)−log3(x+2)<22log37⇒log3(x+2)(x+4)−log3(x+2)−log37<0
⇒log3(x+2)(x+4)7(x+2)<0
As the base of log function is greater than 1, the inequality sign will remain same.
⇒(x+2)(x+4)7(x+2)<1⇒x+47<1 [∵x>−2⇒x+2≠0]⇒x<3
Hence, x∈(−2,3)