The correct options are
A [8,∞)
B (0,2]
log4(3x−1)log14(3x−116)≤34
⇒−log4(3x−1)log4(3x−116)≤34[∵log1/ab=−logab]
⇒log4(3x−1)(2−log4(3x−1))≤34[∵logab,logam=mloga,logaa=1=loga−logb]
let t=log4(3x−1)
4t2−8t−3≥0
⇒t∈(−∞,−3/2)∪(1/2,∞)
Since, y=log4(3x−1)
Therefore, x∈(0,2]∪(8,∞]