The correct option is D x∈(3,92)
Given,
logπ(x+27)−logπ(16−2x)<logπx
log function is defined when
(i) x+27>0
⇒x∈(−27,∞)
(ii) 16−2x>0
⇒x∈(−∞,8)
(iii) x>0
⇒x∈(0,∞)
From (i),(ii) and (iii), we get
x∈(0,8) ⋯(iv)
logπ(x+27)−logπ(16−2x)<logπx
⇒logπ(x+27)(16−2x)<logπx
⇒x+2716−2x<x
⇒x+2716−2x−x<0
⇒2x2−15x+2716−2x<0
⇒(2x−9)(x−3)x−8>0
By wavy curve method
⇒x∈(3,92)∪(8,∞) ⋯(v)
From (iv) and (v), we get
x∈(3,92)