The correct option is A (−5,−2)∪(−1,∞)
We have,
|x+3|+xx+2
⇒|x+3|+xx+2−1>0
⇒|x+3|+x−x−2x+2>0
⇒|x+3|−2x+2>0
Now, two cases arise:
Case I: When x+3≥0, i.e., x≥−3
In this case, we have
|x+3|=x+3
Now, |x+3|−2x+2>0
⇒x+3−2x+2>0
⇒x+1x+2>0
⇒xϵ(−∞,−2)∪(−1,∞)
But, x≥−3
∴xϵ[−3,−2)∪(−1,∞)
Case II When x+3<0, i.e., x<−3
In this case, we have
|x+3|=−(x+3)
Now, |x+3|−2x+2>0
⇒−(x+3)−2x+2>0
⇒−x−5x+2>0
⇒x+5x+2<0
⇒−5<x<−2
But x<−3.
∴xϵ(−5,−3)
Hence, the solution set of the given inequation is (−5,−2)∪(−1∞).