The correct options are
A x=6;y=2
C x=2;y=6
Also, logba=logalogb,logab=1logab
Given, log12x×(1logx2+log2y)=log2x---->A
log2x×log2(x+y)=3×log3x---->B
Consider equation A,
⇒log12x×(1logx2+log2y)=log2x
⇒(1log2x+log2y)=log122
⇒(log2x+log2y)=log122
⇒log2xy=log212
⇒xy=12----->C
Consider equation B,
log2x×log3(x+y)=3×log3x
⇒log3(x+y)=3×log32
⇒log3(x+y)=log38
⇒x+y=8--->D
On solving equation C and D,
⇒x=6,y=2 or x=2,y=6
Options A,C are True.