wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution to the differential equation cos xdy=y(sinx−y)dx, 0<x<π2, is

A
tanx=(secx+c)y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
secx=(tanx+c)y
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
ysecx=tanx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ytanx=secx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C secx=(tanx+c)y
cosxdy=y(sinxy)dx ___(1)
dydx=y(sinxy)cosx=ytanxy2secx
dydxytanx=y2secx ___(2)
[Divide by y2]
y2dydxy1tanx=secx ___ (3)
Let +y1=zy2dydx=dzdx
dzdxztanx=secx ___ (4) =dzdx+ztanx=secx
I.F=e+tanx=e+logsecx=secx
z×I.F=secxI.Fdx
zsecx=sec2xdx
1ysecx=tanx+c
secx=y(tanx+c)

1120585_1144328_ans_ca19011e28414bccbf882bb1f3a2a1bd.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon