The correct option is A −sin 3x9+ex+x412+13x−1
Integrating the given differential equation, we have dydx=−cos 3x3+ex+x33+C1
but y1(0) 1 so 1=−13+1+C1⇒C1=13
Again integrating, we get y=−sin 3x9+ex+x412+13x+C2
but y(0)=0 so 0=1+C2⇒C2=−1. Thus y=−sin 3x9+ex+x412+13x−1