The correct option is
B π8,5π8,9π8,13π8sinx−3sin2x+sin3x=cosx−3cos2x+cos3x
⇒(sinx+sin3x)−3sin2x−(cosx+cos3x)+3cos2x=0
⇒2sin(x+3x2)cos(x−3x2)−3sin2x−2cos(x+3x2)cos(x−3x2)+3cos2x=0
⇒2sin2xcosx−3sin2x−2cos2xcosx+3cos2x=0
⇒sin2x(2cosx−3)−cos2x(2cosx−3)=0
⇒(2cosx−3)(sin2x−cos2x)=0
⇒cosx=32 or sin2x=cos2x
As cosx∈[−1,1]
Thus,cosx≠32
So, sin2x=cos2x
⇒tan2x=1
⇒tan2x=tanπ4
⇒2x=nπ+π4
⇒x=nπ2+π8
For n=0,x=π8
For n=1,x=π2+π8=4π+π8=5π8
For n=2,x=π+π8=9π8
For n=3,x=3π2+π8=12π+π8=13π8
Thus, the solutions are {π8,5π8,9π8,13π8}