The correct option is B 60∘
Let θ be the angle of projection and u its initial speed. Then maximum height will be
H=u2sin2θ2g
⇒gH=u2sin2θ2
Now, v2H=u2cos2θ..........(1)
Using 3rd equation of motion when the projectile is at half the maximum height,
v2H/2=u2−2gH2=u2−gH
=u2−u2sin2θ2.......(2)
Now it is given that
vH=√25vH/2
or v2H=25v2H/2
Substituting the values from Eqn. (1) and (2), we get
u2cos2θ=25[u2−u2sin2θ2]⇒5cos2θ=2[1−sin2θ2]
⇒ 5(1−sin2θ)=2−sin2θ
⇒ sin2θ=34
⇒sinθ=√32 or θ=60∘