wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The speed of an ordinary train is x km per hr and that of an express train is (x + 25) km per hr.

(i) Find the time taken by each train to cover 300 km.

(ii) If the ordinary train takes 2 hrs more than the express train; calculate speed of the express train.

Open in App
Solution

speed= d/t
t = d/s
---
time for ordinary train:
a = 300/x
---
time for express train:
b = 300/(x+25)
---
a = b + 2


300 over x equals fraction numerator 300 over denominator 25 plus x end fraction plus 2 fraction numerator 300 left parenthesis 25 plus x right parenthesis minus 300 x over denominator x left parenthesis 25 plus x right parenthesis end fraction equals 2 300 asterisk times 25 equals 2 x squared plus 50 x 2 x squared plus 50 x minus 7500 equals 0 s o s o l v i n g space left parenthesis x minus 50 right parenthesis left parenthesis x plus 75 right parenthesis equals 0 x equals 50 x equals negative 75 s o space t h e space s p e e d space o f space s i m p l e space t r a i n space equals 50 k m p h e x p r e s s space t r a i n space equals 75 k m p h s o space t i m e space t a k e n space b y space e a c h space t r a i n space equals 300 over 50 equals 6 h r s space f o r space s i m p l e space t r a i n space f o r space e x p r e s s space t equals 300 over 75 equals 4 space h r s

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE by Factorisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon