The square root of 3−4i is
The correct option is A ±(2−i)
Let √3−4i=x+iy
⇒3−4i=x2−y2+2ixy
Lets equate the real parts and the imaginary parts
⇒ x2−y2=3,2xy=−4 ..........(i)
⇒ (x2+y2)2=(x2−y2)2+4x2y2=(3)2+(−4)2=25
⇒ x2+y2=±5 ............(ii)
From equation (i) and (ii)
x2+y2+x2−y2=5+3
⇒2x2=8
⇒x2=4
⇒x=±2---(1)
x2+y2−x2+y2=5−3
⇒2y2=2
⇒y2=1
⇒y=±1
Therefore, √3−4i=±(2+i)