The statement P(n) "1×1!+2×2!+3×3!+...+n×n!=(n+1)!1" is
P(n):1+3+5+...+2n−1=n2 The statement P(n) is
P(n):1.2+2.3+3.4+...+n(n+1)=(n+1)(n+2)3 The statement P(n) is
P(n):1+3+32+...+3n−1=3n−12 The statement P(n)
1×1!+2×2!+3×3!+.....+n×n!=(n+1)!−1 for all N ϵ N.