Given : x+2y−10=0 ⋯(1)
and 2x+y+5=0
⇒ y=−5−2x ⋯(2)
From equations (1) and (2), we get
x+2(−5−2x)−10=0
⇒−3x−20=0
⇒ x=−203
⇒ y=−5+403=253
So, the point of intersection is (−203,253)
Checking whether this point lies on
5x+4y=0 or not.
5(−203)+4(253)=−100+1003=0
So, the point of intersection (−203,253) lies on the line 5x+4y=0
Hence the given statement is true.