The correct option is D none of these
Let the sum be S,
S=210+4103+6105+8107⋯→(1)
Dividing above equation by 100,
S100=2103+4105+6107+⋯→(2)
Subtracting (2) from (1) by shifting one place, we get
99S100=210+2103+2105+2107+…
By using formula,
a+ar+ar2+⋯=a1−r
Here a=210,r=1100,
We get,
99S100=2101−1100
∴S=20009801