wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The sum of 0.2+0.22+0.222+............. to n terms is equal to


Open in App
Solution

Step 1: Simplify the given expression

Given, 0.2+0.22+0.222+...

=20.1+0.11+0.111+...=2110+11100+1111000+...=29910+99100+9991000+...=2910-110+100-1100+1000-11000+...=291-110+1-1100+1-11000+...=29n-110+1100+11000+...

Step 2: Simplify the geometric progression

110,1100,11000,... is a geometric progression with first term a=110 and coomon ratio r=110.

Sum of geometric progression=a1-rn1-r , for r<1

Sum of 110+1100+11000+....... =1101-110n1-110

=110×1-110n910=110×1091-110n=191-110n

29n-110+1100+11000+.......=29n-191-110n

Hence, 0.2+0.22+0.222+...=29n-191-110n.


flag
Suggest Corrections
thumbs-up
11
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Uses of Ratios and Proportions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon