The sum of 0.2+0.22+0.222+............. to n terms is equal to
Step 1: Simplify the given expression
Given, 0.2+0.22+0.222+...
=20.1+0.11+0.111+...=2110+11100+1111000+...=29910+99100+9991000+...=2910-110+100-1100+1000-11000+...=291-110+1-1100+1-11000+...=29n-110+1100+11000+...
Step 2: Simplify the geometric progression
110,1100,11000,... is a geometric progression with first term a=110 and coomon ratio r=110.
Sum of geometric progression=a1-rn1-r , for r<1
Sum of 110+1100+11000+....... =1101-110n1-110
=110×1-110n910=110×1091-110n=191-110n
⇒29n-110+1100+11000+.......=29n-191-110n
Hence, 0.2+0.22+0.222+...=29n-191-110n.
Simplify:
0.2+0.22+0.222+2
Add: 0.2,0.22,0.222and0.0085