The sum of 1+25+352+453+..........upto n terms is
2516-4n+516·5n-1
34-2n+516·5n-1
37-3n+516·5n-1
16-5n+13·5n+2
Explanation for the correct option:
Let Sn=1+25+352+453+...+n5n-1...(1)
Divide Sn by 5
Sn5=15+252+353+...+n5n...(2)
Subtracting (2) from (1)
4Sn5=1+15+152+...-n5n
1+15+152+...+15n-1 is a geometric progression having a=1and common difference r=15
Sum of geometric progression Sn=arn-1r-1
Sum of geometric progression 1+15+152+...+15n-1=115n-115-1
=15n-1-45=51-15n4=145n-15n-1
⇒4Sn5=1+15+152+..............-n5n⇒45Sn=51-15n4-n5n⇒Sn=5451-15n4-n5n⇒Sn=251-15n16-5n4·5n⇒Sn=255n-116·5n-5n4·5n⇒Sn=54·5n55n-14-n⇒Sn=14·5n-15n+1-5-4n4⇒Sn=5n+1-(5+4n)16·5n-1⇒Sn=5n+116·5n-1-(4n+5)16·5n-1⇒Sn=2516-(4n+5)16·5n-1
Hence, option (A) is correct.
Compare the given fraction and replace '□'by an appropriate sign '<or>'
35□45
The sum of 1 + 25 + 352 + 453 + .............upto n terms is