The correct option is A 3.5, 4.5 and 5.5
Given that,
a2+a4=11 .........(1)
a5+a10=20 ...... (2)
we know that, an=a+(n−1)d
a2=a+(2−1)d;a4=a+(4−1)d
a2=a+d;a4=a+3d
similarly,
a5=a+(5−1)d;a10=a+(10−1)d
a5=a+4d;a10=a+4d
substitute the values of a2,a5,a4 & a10 in equation (1) & (2)
∴a+d+a+3d=11
a+4d+a+9d=20
2a+4d=11 ........... (3)
2a+13d=20 ........... (4)
(-) (-) (-)
-------------------
−9d=−9
d=1
put the value of d in equation (1)
2a+4(1)=11
2a=11−4
2a=7
a=3.5
a2=a+d=3.5+1=4.5
a3=a2+d=4.5+1=5.5
∴ The first three terms of this A.P. are 3.5, 4.5 and 5.5