The correct option is
A 496013+23+33+43+...+213=n2(n+1)24 ...(I)using (1)
→13+23+33+43+.........+213=(21)2×(22)24=53361 ...(II)
13+33+53+73+.......+(2n−1)3=n2(2n2−1) ...(III)
Using (III)
13+33+53+....+(21)3=112(2×112−1)=29161 ...(IV)
Given series can be written as:-
(13+33+53+73+93+113+133+153+153+173+193+213−1)
−(23+43+63+83+103+123+143+163+183+203) ...(V)
Now, on apply (II) - (IV), we get:-
(23+43+63+...+203)=53361−29161
=24200 ...(VI)
Now, Put the value of eqn (I), (VI) in (V), we get
(29161−1)−(24200)
=4960
∴ Hence, option A is correct.