The correct option is B 3+12(1+2cos(1))sin(1)
Given, f(x)=∣∣2x2+3x−2∣∣+sinxcosx
⇒f(x)=|(2x−1)(x+2)|+sin2x2
f(x)=⎧⎪
⎪⎨⎪
⎪⎩−(2x−1)(x+2)+sin2x2,0≤x<12(2x−1)(x+2)+sin2x2,12≤x≤1
⇒f′(x)=⎧⎪
⎪⎨⎪
⎪⎩−(4x+3)+cos2x2,0≤x<12(4x+3)+cos2x2,12<x≤1
For 0≤x<12⇒f′(x)<0
For 12<x≤1⇒f′(x)>0
Thus, f(x) has local minima at x=12.
Therefore, absolute minimum value of f(x):
fmin=∣∣∣2(12)2+32−2∣∣∣+sin(12)⋅cos(12)
⇒fmin=12sin(1)
So, maxima is possible at x=0 or x=1
Now, checking for x=0 and x=1
f(0)=2 and f(1)=3+12sin(2)
We can see it attains its maximum value at x=1
∴fmax=3+12sin(2)
Hence, the sum of absolute maximum and minimum values of f(x) is =3+12(sin1+sin2)