The sum of all angles in a quadrilateral is equal to _____ right angles.
Then, ∠A+∠B+∠C+∠D=360∘.
To prove this, we join A and C, i.e. we draw the diagonal AC.
In △ABC,
∠CAB+∠ABC+∠BCA=180∘ [Sum of all angles of a triangle is 180∘].....(1).
In △ACD,
∠CAD+∠ADC+∠DCA=180∘ [Sum of all angle of a triangle is 180∘]....(2).
Adding (1) and (2), we get,
(∠CAB+∠ABC+∠BCA)+(∠CAD+∠ADC+∠DCA)=180∘+180∘
⟹ ∠ABC+∠ADC+(CAB+CAD)+(BCA+DCA)=360∘
⟹ ∠ABC+∠ADC+∠BAD+∠BCD=360∘
⟹ ∴∠A+∠B+∠C+∠D=360∘.
That is, the sum of all angles of a quadrilateral is 360o=4×90o, i.e. 4 right angles.