The correct option is
B 30πcosx⋅cosx((π3+x)⋅cos((π3−x)=14,x∈[0,6π]
4×[cosx⋅cos(π3+x)⋅cos(π3−x)]=1
or, 2cosx[cos(π3+x+π3−x)+cos(π3+x−π3+x)]=1
or, 2cosx[cos2π3+cos2x]=1
or, 2cosx[−12+cos2x]=1
or, −cosx+cos3x+cosx=1
or, cos3x=1=cos0
or, 3x=2nπ±0 where n=0,1,2,3.......
or, x=2nπ3
x=2π3,4π3,6π3,8π3,10π3,12π3,14π3,16π3,18π3
Sum of all values = 2π[1+2+3+4+5+6+7+8+9]3
=2π×453
=30π