The correct option is C 7π2
tanx+cotx+1=cos(x+π4)
1+sinxcosxsinxcosx=1√2(cosx−sinx)
Squaring both sides, we get
sin32x+sin22x+8sin2x+8=0
Put sin2x=t
⇒t3+t2+8t+8=0
⇒(t2+8)(t+1)=0
⇒t=−1,t2=−8
⇒sin2x=−1 (∵sin22x=−8 (not possible) )
So 2x=3π2,7π2,11π2,15π2 for x∈[0,4π]
⇒x=3π4,7π4,11π4,15π4forx∈[0,4π]
But , x=3π4,11π4 only satisfies the given equation.
Hence, sum of solutions =7π2