The correct option is D −14
|505x−1010|+|1515x+505|=2020
⇒|505(x−2)|+|505(3x+1)|=505×4
⇒|x−2|+|3x+1|=4
Case-1: If x<−13
|x−2|+|3x+1|=4
⇒2−x−3x−1=4
⇒−4x=3
⇒x=−34, which is valid for x<−13
∴x=−34 ...(1)
Case-2: If −13≤x<2
|x−2|+|3x+1|=4
⇒2−x+3x+1=4
⇒2x=1
⇒x=12, which is valid for −13≤x<2
∴x=12 ...(2)
Case-3: If x≥2
x−2+3x+1=4
⇒4x=5
⇒x=54, which is not valid for x≥2
∴x≠54 ...(3)
From (1),(2) and (3),
solutions of the given equation are x=−34 and x=12
Sum of solutions =−34+12=−14