The correct option is
B 30πcosx.cos(π3−x).cos(π3+x)=14
⇒cosx.(cosπ3.cosx+sinπ3.sinx).(cosπ3.cosx−sinπ3.sinx)=14
⇒cosx.(14cos2x−34sin2x)=14
⇒cosx.(14cos2x−34(1−cos2x))=14
⇒cosx.(14cos2x+34cos2x−34)=14
⇒cosx.(cos2x−34)=14
⇒cosx.(4cos2x−3)=1⇒4cos3x−3cosx=1
⇒cos3x=1
Therefore general solution is,
3x=2nπ±0⇒x=2nπ3, where n is any integer
thus solutions in the given interval are,
x=0,2π3,4π3,2π,8π3,10π3,4π,14π3,16π3,6π
sum=0+2π3+4π3+2π+8π3+10π3+4π+14π3+16π3+6π
sum=12π+54π3
sum=90π3
sum=30π
Sum of these solution is 30π
Hence,option B is correct.