The sum of all the solutions of the equation cosθcos(π3+θ)cos(π3−θ)=14,θϵ[0,6π]
cosθ.cos(π3−θ).cos(π3+θ)=14
⇒cosθ.(14cos2θ−34sin2θ)=14
⇒cosθ.(4cos2θ−3)=1⇒4cos3θ−3cosθ=1
⇒cos3θ=1
Therefore general solution is,
3θ=2nπ±0⇒θ=2nπ3, where n is any integer
Thus solutions in the given interval are,
θ=0,2π3,4π3,2π,8π3,10π3,4π,14π3,16π3,6π
Sum of these solution is 30π
Hence, option 'B' is correct.