The correct option is C ln(4e)
As we know that, log(1+x)=x−x22+x33−x44+...
Put x=1
log2=1−12+13−14+...=∑∞n=1(−1)n+1n=1+∑∞n=1(−1)nn+1 ...(1)
S∞=11.2−12.3+13.4−14.5+.....
⇒S∞=∑∞n=1(−1)n+1n(n+1)=∑∞n=1(−1)n+1(1n−1n+1)
⇒S∞=∑∞n=1(−1)n+1n+∑∞n=1(−1)nn+1
⇒S∞=log2+log2−1=log22−loge ...[ From (1) ]
⇒S∞=log4e
Ans: D