The correct option is A 204.5
Let Tn be the nth term of the given series. Then, Tn=13+23+33+.....+n31+3+5+...+(2n−1)⇒Tn=(n(n+1)2}2n2(1+(2n−1)}=n2(n+1)24n2×2n=(n+1)24⇒Tn=n2+2n+14The sum of first n terms will be given bySn=∑nk=1Tk=∑nk=1(n2+2n+14)⇒Sn=14(∑nk=1n2 +2∑nk=1n+∑nk=11]⇒Sn=14(n(n+1)(2n+1)6+2n(n+1)2+n]⇒Sn=n24(2n2+9n+13]For n=12Sn=1224(2(12)2+9(12)+13]=204.5