The correct option is B 38
Given: S8=100 and a9a19=1328
Let the first term be a and the common difference be d.
Now, S8=100
⇒82[2a+(8−1)d]=100
⇒4[2a+7d]=100
⇒2a+7d=25 ............(i)
Also, a9a19=1328
⇒a+(9−1)da+(19−1)d=1328
⇒a+8da+18d=1328
⇒28a+224d=13a+234d
⇒28a−13a=234d−224d
⇒15a=10d
⇒a=23d ..............(ii)
Substituting the value of a form (ii) and (i), we get
2×2d3+7d=25
⇒4d+21d3=25
⇒25d=75
⇒d=3
From (ii), we get
a=23×3
⇒a=2
∴13th term a13=a+(13−1)d
=a+12d
=2+12×3
=2+36
=38
Hence the correct answer is option (2)