sumofmterms=4m2−mthenS1=a1=4⋅12=3S2=a1+a2=4⋅22−2=14
∴a2=14−3=11anda1=14−a2=14−11=3∴firstterm=3andcommondiff=8
now nthterm is 107a+(n−1)d=1073+(n−1)⋅8=107(n−1)⋅8=104n−1=(1048)=19
∴n=14
now a21=a+20d
=3+(20 X 8)
=3+160=163
The sum of first m terms of an A.P. is 4m2-m. If its nth terms is 107, find the value of n. Also, find the 21st term of this A.P.