Given Sn=n2(n+1)24
∴Sn−1=(n−1)2[(n−1)+1]24=n2(n−1)24
Now, tn=Sn−Sn−1
=n2(n−1)24−n2(n−1)24=n2(n+1)2−n2(n−1)24
=n2[(n+1)2−(n−1)2]4
=n2[n2+2n+1−(n2−2n+1)]4
=n2[n2+2n+1−n2+2n−1]4=n2(4n)4
∴tn=n3
∴ Hence, tn+1=(n+1)3
Now, consider tn+1−tn=(n+1)3−n3
=n3+3n2+3n+1−n3=3n2+3n+1
≠ constant.
∴ The given sequence is not in A.P.
Now, consider
tn+1tn=(n+1)3n3≠ constant
∴ The sequence is not a G.P.
Hence, the given sequence is not an A.P. nor a G.P.