The sum of first three terms of a G.P. is 3910 and their product is 1. Find the common ratio and the terms.
Let ar, a, ar be first three term of the given G.P
∴ar+a+ar=3910 .... (1)
and ar+a+ar=1
⇒a3=1⇒a=1 ........(2)
Substituting the value of 'a' from (2) in(1),
1r+1+r=3910
⇒10+10r+10r2=39r
⇒10r2−29r+10=0
∴r=−(−29)±√(−29)2−4x×10×102×10
⇒r=29±√841−40020⇒r=29±2120
Either r=29+2120⇒or r=29±2120
⇒r=5020=52 or r=820=25
When r=52, then the first three terms of the G.P. are
125,1,1×52 i.e., 52,1,25.
When r=25, then the first three terms of the G.P. are
125,1,1×25 or 52,1,25.