Let,the numbers in A.P be a−3d,a−d,a+d,a+3d
Given: Sum of four consecutive numbers =32
∴a−3d+a−d+a+d+a+3d=32
⟹4a=32
⟹a=324=8
Now,
A.T.Q,
(a−3d)(a+3d)(a−d)(a+d)=715
⟹a2−9d2a2−d2=715
⟹64−9d264−d2=715[∵a=8]
⟹(64−9d2)×15=7(64−d2)
⟹64×15−135d2=7×64−7d2
⟹64×15−7×64=135d2−7d2
⟹64(15−7)=128d2
⟹64×8=128d2
⟹64×8128=d2
⟹d2=5
⟹d=±2
∴ Either , the numbers are 2,6,10,14
or
14,10,6,2