Let the required numbers be
(a−3d),(a−d),(a+d),(a+3d)
Now,
(a−3d)+(a−d)+(a+d)+(a+3d)=20⇒4a=20⇒a=5
Also,
(a−3d)2+(a−d)2+(a+d)2+(a+3d)2=120⇒4a2+20d2=120⇒100+20d2=120⇒d=±1
Hence, the required numbers are 2,4,6,8 or 8,6,4,2, so the absolute value of common difference is 2.