Let the terms be a−3d,a−d,a+d,a+3d.
Given, Sum =20
⇒a−3d+a−d+a+d+a+3d=20
⇒4a=20
⇒a=5
Also given, sum of squares =120
⇒(a−3d)2+(a−d)2+(a+d)2+(a+3d)2=120
⇒(5−3d)2+(5−d)2+(5+d)2+(5+3d)2=120
⇒25−30d+9d2+25−10d+d2+25+10d+d2
⇒25+30d+9d2=120
⇒100+20d2=120
⇒20d2=20
⇒d2=1
⇒d=±1
The terms are a−3d,a−d,a+d,a+3d
Thus, 5−3,5−1,5+1,5+3
(i.e.) 2,4,6,8 or 8,6,4,2