Suppose that,
The four consecutive number of an A.P be
a,a+d,a+2d and a+3d
Given that,
a+a+d+a+2d+a+3d=32
4a+6d=32
2a+3d=322
2a+3d=16
a=16−3d2
According to given question
a(a+3d)(a+d)(a+2d)=715
⇒15a(a+3d)=7(a+d)(a+2d)
⇒15a2+45ad=7a2+21ad+14d2
⇒8a2+24ad−14d2=0
⇒4a2+12ad−7d2=0
⇒4a2+14ad−2ad−7d2=0
⇒2a(2a+7d)−d(2a+7d)=0
⇒(2a+7d)(2a−d)=0
⇒a=−7d2,a=d2
Substitute value of a in equation (1) and we get,
When, a=−7d2 and a=d2
−7d2=16−3d2d2=16−3d2
−7d=16−3dd=16−3d
−4d=164d=16
d=−4d=4
Here
d=4(positive)
then
a=d2
a=42=2
a=2
Therefore four consecutive number are
a,a+d,a+2d,a+3d
2,6,10and14
Hence, this is the answer.