Let the 4 consecutive numbers in AP be
(a−3d),(a−d),(a+d),(a+3d)
According to the question,
a−3d+a−d+a+d+a+3d=32
4a=32
a=8
Now,
(a−3d)(a+3d)(a−d)(a+d)=715
15(a2−9d2)=7(a2−d2)
15a2−135d2=7a2−7d2
8a2=128d2
Putting the value of a, we get,
d2=4
d=±2
So, the four consecutive numbers are 2,6,10,14 or 14,10,6,2.