The sum of i - 2 - 3i + 4 + ....... upto 100 terms, which i = √−1
is
50(1-i)
Let S = i - 2 - 3i + 4 + 5i + ....... + 100 i100
⇒ S = i + 2i2 + 3 i3 + 4 i4 + 5i5 + ........ + 100 i100
⇒iS = i2 + 2i3 + 3 i4 + 4 i5 + ........ + 99i100 + 100 i101
∴ S - iS = [i + i2 + i3 + i4 +.........+i100] - 100 i101
⇒S(1 - i) = 0 - 100i101 = -100i
∴ S = −100i1−i = -50i(1 + i) = -50(i - 1) = 50(1 - i).