The sum of i-2-3i+4+...upto 100 terms, wherei=-1 is
501-i
251+i
1001-i
25i
Explanation for correct option
We know that i2=-1 and i4=1
Therefore,Sn the sum of the first n term of the series is
Sn=i-2-3i+4+....+100i100=1i+2i2+3i3+..+100i100∴iSn=i2+2i3+3i4+...+100i101∴Sn-iSn=i+i2+i3+..+i100-100i101⇒1-iSn=ii100-1i-1-100i101⇒1-iSn=i1-1i-1-100i101∵i100=1⇒1-iSn=-100i101⇒Sn=-100i1011-i⇒Sn=-100i100·i·1+i1-i1+i⇒Sn=-100i100·i+i22⇒Sn=50·1-i∵i100=1i2=-1
Hence, option A is correct.
If i2=−1, then the sum i+i2+i3+...... upto 1000 terms is equal to
Write the sum of the series i+i2+i3+....... upto 1000 terms.