The correct option is D 3516
Let the sum to infinity of the arithmetico-geometric series be 1+4.15+7.152+10.153+.......
⇒ 15S=15+4.152+7.153+.......
Subtracting (1−15)S=1+3.15+3.152+3.153+.....
=1+3(15+152+....)
⇒ 45.S=1+3.15(11−15)=1+34=74⇒S=3516.
Aliter : Use direct formula S∞=ab1−r+dbr(1−r)2
Here a = 1, b = 1, d = 3, r = \frac{1}{5}, therefore S∞=11−15+3×1×15(1−15)2=54+351625=54+1516=3516.
Aliter : Use S=[1+r1−r×diff.ofA.P.]11−r