The sum of infinite terms of the following series
1 + 45 + 752 + 1053 + ...........∞ will be
3516
Let the sum to infinity of the arithmetic-geometric series be
S = 1 + 4 . 15 + 7. 152 + 10. 153 +........
⇒ 15 S = 15 + 4.152 + 7.153 +...........
Subtracting (1 - 15)S = 1 + 3.15 + 3.152 + 3. 153 + .......
= 1 + 3(15 + 152 + ..............)
⇒ 45 S = 1 + 3.15(11−15) = 1 + 34 = 74 ⇒ S = 3516.
Aliter : Use direct formula S∞ = ab1−r + dbr(1−r)2
Here a = 1, b = 1, d = 3, r = 15, therefore
S∞ = 11−15 + 3×1×15(1−152) = 54 + 351625 = 54 + 1516 = 3516.
Aliter: Use S = [1 + r1−r × diff. of A.P. ]11−r