The correct option is A 124
Sn=11⋅4⋅7+14⋅7⋅10+⋯+1(3n−2)(3n+1)(3n+4)
Here tn = 1(3n−2)(3n+1)(3n+4)
Let Vn=1(3n+1)(3n+4) and Vn−1=1(3n−2)(3n+1)
Substituting n=0, we get V0=14
Vn−Vn−1=6tn
⇒tn=16[Vn−1−Vn]
Substituting n=1,2,3, ... then adding t1+t2+t3+...+tn=Sn=16[V0−Vn]
=16[14−1(3n+1)(3n+4)]
Therefore, S∞=limn→∞Sn=limn→∞16[14−1(3n+1)(3n+4)]=124
Ans: B