The correct option is A −17
Let n2+17n+75=m2,m∈Z
⇒n2+17n+(75−m2)=0
⇒n=−17±√172−4(75−m2)2 =−17±√4m2−112
Hence 4m2−11 should be an odd perfect square if n has to be an integer.
So, 4m2−11=p2 where p is an odd integer.
⇒(2m−p)(2m+p)=11
2m−p2m+pmp111351113−5−1−11−3−5−11−1−35
Possible value of m is 3,−3.
∴n=−17±√36−112=−11,−6