√x2−p+2√x2−1=x⋯(1)x2−1≥0⇒x≥1 or x≤−1
And x>0
Therefore, x≥1
Squaring equation (1), we get
4√(x2−p)(x2−1)=p+4−4x2
So,
p+4−4x2≥0⇒p≥4(x2−1)⇒p≥0
Squaring again, we get
⇒16(x4−x2−px2+p)=(p+4)2+16x4−8x2(p+4)
⇒8x2(2−p)=p2−8p+16⇒8x2(2−p)=(p−4)2
So,
2−p>0⇒p<2
When p=0,
x=1
When p=1,
3√x2−1=x⇒x2−1=x29⇒x=32√2
Sum of integral values of p is 1