The correct option is D 4
√x+√y=2
Let x=4cos4θ, y=4sin4θ
dxdθ=−16cos3θsinθdydθ=16sin3θcosθ⇒dydx=−tan2θ
So, the equation of tangent is,
y−4sin4θ=−tan2θ(x−4cos4θ)
For x− intercept, put y=0
x=4sin4θtan2θ+4cos4θ =4sin2θcos2θ+4cos4θ =4cos2θ
For y− intercept, put x=0
y=4sin4θ+4cos4θ⋅tan2θ =4sin4θ+4sin2θcos2θ =4sin2θ
Therefore, the sum of intercept
=4cos2θ+4sin2θ=4