The correct option is D 2(n+1)n+2
Given Tn=1[n(n+1)2]=2[1n−1n+1]
Put n=1,2,3,....,(n+1), we get
T1=2[11−12],T2=2[12−13],.....,
Tn+1=2[1n+1−1n+2]
Hence, sum of (n+1) terms S(n+1)=n+1∑k=1Tk
=2[11−12]+2[12−13].......+2[1n+1−1n+2]
=2[11−12+12−13+.......1n+1−1n+2]
⇒ Sn+1=2[1−1n+2]
=2[n+2−1n+2]
∴Sn+1=2(n+1)(n+2)